Journal of Magnetic Resonance 196 (2009) 88-91

Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier.com/locate/jmr

¹H–¹H double-quantum CRAMPS NMR at very-fast MAS (v_R = 35 kHz): A resolution enhancement method to probe ¹H–¹H proximities in solids

Luís Mafra^{a,*}, José R.B. Gomes^a, Julien Trébosc^b, João Rocha^a, Jean-Paul Amoureux^b

^a Department of Chemistry, University of Aveiro, Campus de Santiago, CICECO, 3810-193 Aveiro, Portugal ^b UCCS (CNRS-8181), University of Lille-1, Fr-59652 Villeneuve d'Ascq, France

ARTICLE INFO

Article history: Received 31 July 2008 Revised 30 September 2008 Available online 12 October 2008

Keywords: High-resolution ¹H NMR ¹H-¹H decoupling CRAMPS 2D ¹H-¹H DQ-SQ SAM3 Double-quantum spectroscopy Homonuclear correlation

on ¹H NMR

The potential of multiple-quantum MAS NMR spectroscopy, particularly DQ MAS, for the characterisation of solids is wellknown. The use of solid-state NMR techniques that exploit the dipolar couplings to measure nuclear distances between heteronuclear spin-pairs is well established and many applications are available. The ability to probe proximities between hetero and homo nuclear spin-pairs, e.g., ¹³C-¹⁵N [1], ¹³C-¹³C [2] and ¹⁵N–¹⁵N [3], is very important to study biological solids. However, such experiments are mostly dedicated to enriched samples owing to the low natural abundance of such nuclei. Because of its high sensitivity and high isotopical abundance, ¹H is an attractive nucleus to probe molecular structure and dynamics. However, assessing ¹H–¹H distances in rigid solids through dipolar couplings poses several well-known difficulties and some pioneering work toward this direction have been reported by Brown and Spiess [4]. The strong ¹H homonuclear dipolar couplings typically result in broad and featureless lineshapes and poorly-resolved ¹H spectra. The use of 1D ¹H MAS and 2D ¹H-¹H DO recoupling experiments, employing fast sample spinning alone (\sim 30 kHz), has been shown to afford enough resolution to study hydrogen bondings and π - π stacking effects in crystalline systems [5].

¹H homonuclear recoupling NMR pulse sequences are among the most powerful techniques to obtain ¹H chemical information in solids. A variety of methods are available to recouple homonu-

* Corresponding author.

E-mail address: lmafra@ua.pt (L. Mafra).

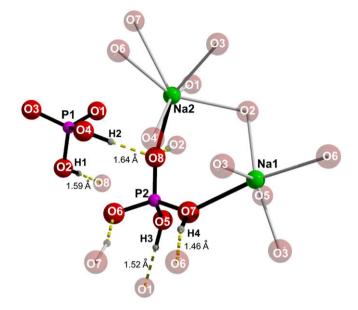
ABSTRACT

A High-resolution two-dimensional (2D) ¹H double-quantum (DQ) homonuclear recoupling experiments, combined with smooth amplitude-modulation (SAM) homonuclear decoupling is presented. The experiment affords highly resolved and clean ¹H DQ–SQ 2D spectra at very-fast MAS rates (ν_R = 35 kHz). The method is well suited to probe ¹H–¹H distances in powdered solids and demonstrations are applied on a NaH₂PO₄ powdered sample, an inorganic compound having hydrogen bonding networks.

© 2008 Elsevier Inc. All rights reserved.

clear dipolar couplings (e.g., HORROR, R², RFDR, RIL, DREAM, CMR7, SPC5, POST-C7, BABA) [2,6], mainly employed on spins different from ¹H. Among these, the later two are widely used as DQ recoupling schemes. Concerning applications under fast MAS conditions, these different pulse sequences have diverse efficiencies and are not equally well adapted for dipolar recoupling purposes, because they differ in the rf pulse requirements, excitation bandwidths, compensation for rf imperfections and perturbing interactions. To overcome this problem, alternative symmetry-based (CN_n^{ν}, RN_n^{ν}) pulse schemes, such as, SC14⁵₄ [7] and R6²₆ [8] have been proposed to allow recording spectra at higher spinning rates (up to 20 kHz). Alternative ¹H line-narrowing methods (other than fast MAS alone), based on ¹H CRAMPS decoupling schemes, such as DUMBO and PMLG sequences, have been successfully combined with the POST-C7 and the C9 DQ recoupling schemes, respectively, considerably improving the ¹H spectral resolution in the singlequantum (SQ) and DQ dimensions and providing a better insight to probe ${}^{1}H-{}^{1}H$ proximities [9,10]. However, such schemes may present certain difficulties on their optimisation, depending on the actual spectrometer console. Such ¹H CRAMPS decoupling techniques contain multiple pulses (including tilted pulses [9]) with several discrete phase changes, which may introduce additional rf imperfections, i.e., phase transients, phase propagation delays and other artefacts. Up to now, the performance of these DQ excitation/reconversion and CRAMPS methods has been restricted to moderate MAS rates (up to ca. 25 kHz), because the available ¹H decoupling methods did not perform well at higher spinning

Communication


^{1090-7807/\$ -} see front matter \odot 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jmr.2008.10.009

speeds, at least using moderate *rf* field strengths, due to interference between the spin- and real space-modulations of the homonuclear interaction. In most cases, the ¹H decoupling cycle times must be shorter than the rotor periods ($\tau_{\rm C} < \tau_{\rm R}$) to obtain efficient dipolar decoupling. Adapting CRAMPS decoupling to ultra-fast MAS probes now commercially available (v_R up to *ca*. 70 kHz) is a very important issue in modern solid-state NMR. Here, we wish to show how to design a high-resolution 2D ¹H DQ-SQ correlation experiment employing ¹H homonuclear decoupling in both dimensions, that performs well at ultra-fast MAS rates, being easy to optimise, and offering considerable resolution improvement and clean 2D ¹H NMR spectra. The effectiveness of this pulse sequence (Fig. 1) is demonstrated on NaH₂PO₄, a model inorganic material, aiming to discriminate and assign all the ¹H resonances involved in a network formed by multiple O-H ... O hydrogen bonding (Fig. 2).

The very recently reported SAM sequences, were employed for ¹H homonuclear decoupling, consisting of a Smooth Amplitude-Modulated decoupling strategy able to eliminate rotor-rf lines, zero-frequency peak, quadrature images and additional artefacts. SAM is a smooth version of $CN_n^{N/2}$ rotor-synchronized pulse sequence, which uses a Zero (instead of 360°) rotation basic element that corresponds to a z-rotation for chemical shift and does not cancel it. In our case, we have employed the SAM_3 [11] and $wSAM_3$ [12] decoupling versions during t_1 and t_2 evolutions, respectively. SAM₃ corresponds to a continuous version of the $C6_1^3$ symmetry sequence using three rf cosine modulation periods every rotor period $\tau_{\rm R}$. This rotor-synchronization helps to avoid interferences during t_1 between MAS and rf decoupling. The wSAM₃ decoupling sequence consists in applying the SAM₃ blocks during $\tau_{\rm R}$, followed by observation windows. The BABA sequence [13] was chosen for the excitation/ reconversion of the DQ coherences, since it is well adapted to fast ¹H MAS NMR experiments and is one of the most simple and robust recoupling methods.

Fig. 3 shows 2D DQ–SQ ¹H spectra recorded at 9.4 T (Bruker Avance-II spectrometer), with a spinning rate of 35 kHz, on a 2.5 mm double-resonance probe. Additional experimental details are provided in the figure caption. Fig. 3a shows the 2D DQ–SQ ¹H CRAMPS spectrum recorded using the pulse sequence in Fig. 1. For comparison, the 2D ¹H BABA spectrum ¹H decoupled in t_1 only (Fig. 3b) and the conventional BABA spectrum (Fig. 3c) are also depicted. The spectrum in Fig. 3a exhibits highly resolved lines in both the t_1 and t_2 dimensions, and all ¹H resonances are observed. The considerable improvement in ¹H resolution obtained using our method is better ascertained by comparing the F₁ projections (DQ dimension). Clearly, along this dimension, the conventional BABA experiment does not reveal all ¹H DQ resonances.

NaH₂PO₄ is monoclinic and, in addition to presenting two crystallographically non-equivalent phosphorous (P1 and P2) and so-

Fig. 2. Ball-and-stick representation of asymmetric unit and coordination environment of NaH₂PO₄, emphasising the O-H \cdots O hydrogen bonding (dashed lines) network involving the phosphate groups [14].

dium (Na1 and Na2) nuclei, the room-temperature neutrondiffraction study revealed four distinct proton environments (H1-4) involved in strong O–H ··· O hydrogen bonds (length 1.46– 1.64 Å, Fig. 2). More details on the crystal structure may be found elsewhere [14].

Through observation of the F_2 projection relative to the classic (Fig. 3c) and t_1 ¹H decoupled (Fig. 3b) DQ spectra, it is possible to identify three resolved ¹H resonances at ca. 9.5 (H2), 11.5 (H1) and 13 (H3+H4) ppm (Fig. 2). However, the t_1 and t_2 ¹H decoupled DQ spectrum (Fig. 3a) resolves one additional ¹H peak at high frequency giving rise to two distinct peaks at *ca.* 12.9 and 13.3 ppm. Assignment of these four peaks can be made qualitatively, based on the well-known correlation between the low-field shift of ¹H resonances and the strength of hydrogen bonds, which may be estimated through hydrogen bond lengths (Fig. 2). The ¹H chemical shifts were calculated with two different exchange-correlation functionals and cluster or periodic models of NaH₂PO₄ in order to overcome the difficulties in the correct resonance assignment. The theoretical calculations corroborate the ¹H assignment made above with full details given as Supplementary Data.

The neutron-diffraction data [14] revealed that all the four proton sites are close to each other (<5 Å), enabling the observation of all the expected ¹H DQ–SQ contacts in 2D spectra. For example the proxim-

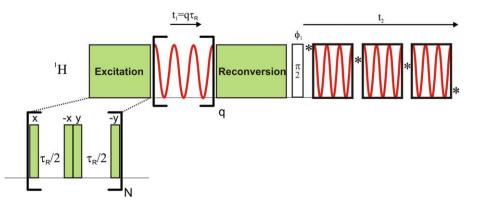
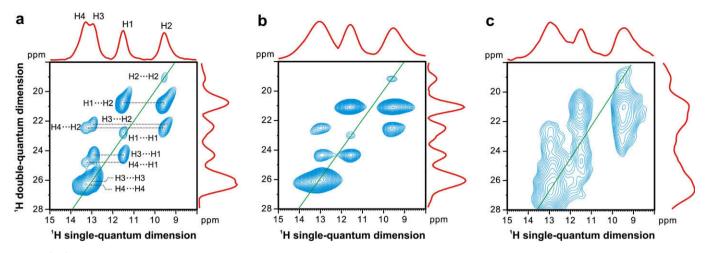



Fig. 1. Pulse sequence used to record the 2D ¹H-¹H DQ-SQ correlation spectra of Fig. 3a. Asterisks depict a sampled complex data point.

Fig. 3. 2D ¹H⁻¹H DQ–SQ correlation spectra of NaH₂PO₄, recorded in 2 h, employing the ((a and b) BABA sequence using homonuclear decoupling during a) both indirect (t_1) and direct (t_2) dimensions using SAM3 and wSAM3, respectively (Fig. 1), (b) the indirect (t_1) dimension using SAM3 and employing the (c) classic BABA only. 224 t_1 points with 16 scans each were recorded using a recycle delay of 2s. A one rotor period version of BABA (N = 1, Fig. 1) was used for excitation and reconversion ($\tau_{repl} = 28.6 \ \mu s$) of DQ coherences employing 90° pulse lengths of 2.1 μs ; $v_R = 35 \text{ kHz}$; (w)SAM3 decoupling conditions: the same *rf*-power decoupling was used in both SAM3 and wSAM3; $v_{mod} = 115 \text{ kHz}$; the cosine amplitude-modulated shapes were defined with 350 ns steps; the wSAM3 sampling window (t_w) was set to 7.1 μs . The carrier frequency was set to 17 ppm in both dimensions. The experimental scaling factor was $\kappa = 0.7-0.72$ for both dimensions. ¹H⁻¹H DQ spin-pairs are depicted in (a).

ities between equivalent proton environments may be seen along the diagonal. They correspond to inter-nuclear distances of 3.69, 3.12, 3.72 and 2.40 Å, for H1-H1 with SQ and DQ shifts of 11.5 ppm and 23 ppm, respectively; H2–H2 (SQ = 9.5 ppm; DQ = 19 ppm); H3-H3 (SQ = 12.9 ppm;DQ = 25.8 ppm) and H4-H4(SQ = 13.3 ppm; DQ = 26.6 ppm). The off-diagonal contacts refer to proximities between protons from distinct environments and are also easily resolved in the high-resolution 2D DQ spectrum. It is worth noting that the off-diagonal contacts such as H3-H1/H4-H1 and H3-H2/H4-H2 may only be found by applying simultaneous ¹H decoupling in the t_1 and t_2 dimensions. For example, these DQ– SQ contacts could not be separated from the spectra in Fig. 3b, which supports the importance of decoupling the ¹H spins during the direct NMR signal observation. The ¹H MAS spectrum, which is similar to the F₂ projections of the spectra in Fig. 3b and c is relatively narrow having a FWMH of ca. 1 and 0.8 ppm for H2 and H1 protons, respectively. In the fully highly resolved DO spectra, a factor of 2-2.5 in resolution is obtained, comparing the F₂ projections of Fig. 3a-c.

As concluding remarks, we have shown the homonuclear decoupling performance of (w)SAM₃ adapted to high-resolution 2D ¹H–¹H DQ–SQ correlation experiments recorded at very-fast MAS rates (v_{R} = 35 kHz) where other previous CRAMPS methods failed up to now to deliver high-quality ¹H spectra. This method allows separating all the DQ–SQ contacts involving the four ¹H resonances of PO-H hydrogen bonded groups present in NaH₂PO₄. The method may be easily implemented on any spectrometer. Its calibration is very straightforward and the method does not suffer from *rf* pulse imperfections, thus, delivering a clean ¹H spectrum. It is important to stress that the quest for higher MAS rates is not only required to further decouple dipolar coupled proton spins to enhance ¹H resolution, but also to deliver a number of advantages such as: (i) reduced transverse losses, which is particularly interesting for all multi-dimentional experiments, (ii) reduced CSA effects at high static magnetic fields, (iii) hetero nuclear decoupling that can be performed with low rf-power, (iv) increased spectral-width in all rotor-synchronized experiments. In face of such advantages, related to very-fast MAS, we expect that cosine amplitude modulation ¹H decoupling schemes may be easily adapted to other NMR sequences to facilitate the application of ¹H CRAMPS methods at much higher spinning rates than the actual ones. Applications of such combination, on heteronuclear experiments, are underway and will be published elsewhere.

Acknowledgments

The authors are grateful to FCT for funding through the PESSOA programme involving a luso-french integrated action (proc.° 4.1.1). The University of Aveiro (CICECO) and the University of Lille are also thanked for support and funding. JPA and JT would like to thank Region Nord/Pas de Calais, Europe (FEDER), USTL, FR-3950, ENSCL, ANR NT05-2-41632, and the Bruker Company for funding.

Appendix A. Supplementary data

DFT calculations, to determine the theoretical ¹H chemical shifts of NaH₂PO₄. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jmr.2008.10.009.

References

- T. Gullion, J. Schaefer, Rotational-echo double-resonance NMR, Journal of Magnetic Resonance 81 (1989) 196–200.
- [2] C.M. Rienstra, M.E. Hatcher, L.J. Mueller, B. Sun, S.W. Fesik, R.G. Griffin, Efficient multispin homonuclear double-quantum recoupling for magic-angle spinning NMR: C-13–C-13 correlation spectroscopy of U-C-13-erythromycin A, Journal of the American Chemical Society 120 (1998) 10602–10612.
- [3] S.P. Brown, M. Pérez-Torralba, D. Sanz, R.M. Claramunt, L. Emsley, Determining hydrogen-bond strengths in the solid state by NMR: the quantitative measurement of homonuclear J couplings, Chemical Communications (2002) 1852–1853.
- [4] S.P. Brown, H.W. Spiess, Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular system, Chemical, Reviews 101 (2001) 4125–4155. and references therein..
- [5] I. Schnell, Dipolar recoupling in fast-MAS solid-state NMR spectroscopy, Progress in Nuclear Magnetic Resonance Spectroscopy 45 (2004) 145–207, and references therein.
- [6] S. Dusold, A. Sebald, Dipolar recoupling under magic-angle spinning conditions, Annual Reports on NMR Spectroscopy 41 (2000) 185–264, and references therein.
- [7] A. Brinkmann, M. Edén, M.H. Levitt, Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: double quantum recoupling of multiple-spin systems, Journal of Chemical Physics 119 (2000) 8539–8554.
- [8] A. Brinkmann, J.S. Gunne, M.H. Levitt, Homonuclear zero-quantum recoupling in fast magic-angle spinning nuclear magnetic resonance, Journal of Magnetic Resonance 156 (2002) 79–96.
- [9] S.P. Brown, A. Lesage, B. Elena, L. Emsley, Probing proton-proton proximities in the solid state: high-resolution two-dimensional H-1-H-1 double-quantum CRAMPS NMR spectroscopy, Journal of the American Chemical Society 126 (2004) 13230–13231.
- [10] P.K. Madhu, E. Vinogradov, S. Vega, Multiple-pulse and magic-angle spinning aided double-quantum proton solid-state NMR spectroscopy, Chemical Physics Letters 394 (2004) 423–428.

- [11] J.P. Amoureux, B. Hu, J. Trébosc, Enhanced resolution in proton solid-state NMR with very-fast MAS experiments, Journal of Magnetic Resonance 193 (2008) 305–307.
- [12] J. P. Amoureux, B. Hu, J. Trébosc, O. Lafon, Q. Wang, Solid State NMR, Submitted for publication.
- [13] W. Sommer, J. Gottwald, D.E. Demco, H.W. Spiess, Dipolar heteronuclear multiple-quantum NMR-spectroscopy in rotating solids, Journal of Magnetic Resonance Series A 113 (1995) 131–134.
 [14] R.N.P. Choudhary, R.J. Nelmes, K.D. Rouse, A room-temperature neutron-diffraction study of NaH₂PO₄, Chemical Physics Letters 78 (1981) 102–105.